Foliations invariant under Lie group transverse actions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence Relations Invariant under Group Actions

We study, in an abstract context, equivalence relations which are invariant under group actions. More precisely, we fix a transformation group, and we study the orbital equivalence relations (i.e. orbit equivalence relations of normal subgroups) and a wider class of weakly orbital equivalence relations. For these sorts of relations we show (under some additional assumptions) that if each class ...

متن کامل

Lie group foliations: dynamical systems and integrators

Foliate systems are those which preserve some (possibly singular) foliation of phase space, such as systems with integrals, systems with continuous symmetries, and skew product systems. We study numerical integrators which also preserve the foliation. The case in which the foliation is given by the orbits of an action of a Lie group has a particularly nice structure, which we study in detail, g...

متن کامل

Desingularizing Compact Lie Group Actions

This note surveys the well-known structure of G-manifolds and summarizes parts of two papers that have not yet appeared: [4], joint with J. Brüning and F. W. Kamber, and [8], joint with I. Prokhorenkov. In particular, from a given manifold on which a compact Lie group acts smoothly, we construct a sequence of manifolds on which the same Lie group acts, but with fewer levels of singular strata. ...

متن کامل

Lie group actions on compact

Let G be a homotopically trivial and effective compact Lie group action on a compact manifold N of nonpositive curvature. Under certain assumptions on N we prove that if G has dimension equal to rank of Center π1(N), then G must be connected. Furthermore, if on N there exists a point having negative definite Ricci tensor, then we show that G is the trivial group.

متن کامل

Linear Extensions of Orders Invariant under Abelian Group Actions

Let G be an abelian group acting on a set X, and suppose that no element of G has any finite orbit of size greater than one. We show that every partial order on X invariant under G extends to a linear order on X also invariant under G. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set X, there is a G-invariant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2008

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-008-0523-7